Package: bibs 1.1.1

bibs: Bayesian Inference for the Birnbaum-Saunders Distribution

Developed for the following tasks. 1- Simulating and computing the maximum likelihood estimator for the Birnbaum-Saunders (BS) distribution, 2- Computing the Bayesian estimator for the parameters of the BS distribution based on reference prior proposed by Xu and Tang (2010) <doi:10.1016/j.csda.2009.08.004> and conjugate prior. 3- Computing the Bayesian estimator for the BS distribution based on conjugate prior. 4- Computing the Bayesian estimator for the BS distribution based on Jeffrey prior given by Achcar (1993) <doi:10.1016/0167-9473(93)90170-X> 5- Computing the Bayesian estimator for the BS distribution under progressive type-II censoring scheme.

Authors:Mahdi Teimouri

bibs_1.1.1.tar.gz
bibs_1.1.1.zip(r-4.5)bibs_1.1.1.zip(r-4.4)bibs_1.1.1.zip(r-4.3)
bibs_1.1.1.tgz(r-4.5-any)bibs_1.1.1.tgz(r-4.4-any)bibs_1.1.1.tgz(r-4.3-any)
bibs_1.1.1.tar.gz(r-4.5-noble)bibs_1.1.1.tar.gz(r-4.4-noble)
bibs_1.1.1.tgz(r-4.4-emscripten)bibs_1.1.1.tgz(r-4.3-emscripten)
bibs.pdf |bibs.html
bibs/json (API)

# Install 'bibs' in R:
install.packages('bibs', repos = c('https://mahditeimouri.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 4 scripts 280 downloads 7 exports 1 dependencies

Last updated 3 years agofrom:edfdfc03d9. Checks:1 OK, 7 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 20 2025
R-4.5-winNOTEFeb 20 2025
R-4.5-macNOTEFeb 20 2025
R-4.5-linuxNOTEFeb 20 2025
R-4.4-winNOTEFeb 20 2025
R-4.4-macNOTEFeb 20 2025
R-4.3-winNOTEFeb 20 2025
R-4.3-macNOTEFeb 20 2025

Exports:conjugatebsJeffreysbsmlebsrbsreferencebstypeIIbswelcome

Dependencies:GIGrvg